Abstract

Light field reconstruction and synthesis algorithms are essential for improving the lower spatial resolution for hand-held plenoptic cameras. Previous light field synthesis algorithms produce blurred regions around depth discontinuities, especially for stereo-based algorithms, where no information is available to fill the occluded areas in the light field image. In this paper, we propose a light field synthesis algorithm that uses the focal stack images and the all-in-focus image to synthesize a 9 × 9 sub-aperture view light field image. Our approach uses depth from defocus to estimate a depth map. Then, we use the depth map and the all-in-focus image to synthesize the sub-aperture views, and their corresponding depth maps by mimicking the apparent shifting of the central image according to the depth values. We handle the occluded regions in the synthesized sub-aperture views by filling them with the information recovered from the focal stack images. We also show that, if the depth levels in the image are known, we can synthesize a high-accuracy light field image with just five focal stack images. The accuracy of our approach is compared with three state-of-the-art algorithms: one non-learning and two CNN-based approaches, and the results show that our algorithm outperforms all three in terms of PSNR and SSIM metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.