Abstract

Micro-endoscopes are widely used for detecting and visualizing hard-to-reach areas of the human body and for in vivo observation of animals. A micro-endoscope that can realize 3D imaging at the camera framerate could benefit various clinical and biological applications. In this work, we report the development of a compact light-field micro-endoscope (LFME) that can obtain snapshot 3D fluorescence imaging, by jointly using a single-mode fiber bundle and a small-size light-field configuration. To demonstrate the real imaging performance of our method, we put a resolution chart in different z positions and capture the z-stack images successively for reconstruction, achieving 333-μm-diameter field of view, 24 μm optimal depth of field, and up to 3.91 μm spatial resolution near the focal plane. We also test our method on a human skin tissue section and HeLa cells. Our LFME prototype provides epi-fluorescence imaging ability with a relatively small (2-mm-diameter) imaging probe, making it suitable for in vivo detection of brain activity and gastrointestinal diseases of animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.