Abstract

The real-time performance of light-field 3D encryption technology based on the integral imaging principle is restricted by the acquisition speed and the data of the elemental image array (EIA). Herein, we propose a light-field 3D encryption scheme based on monocular depth rendering. With the help of a convolution residuals network (CRN), the proposed scheme can generate the corresponding depth map from a single RGB image and simplify the pickup process of the EIA according to the image mapping. For encryption, using reversible state loop cellular automata (RSL-CA) to encrypt a single RGB image updates traditional 3D encryption, greatly improving the security and efficiency of the encryption algorithm. It is experimentally demonstrated that optical 3D reconstruction is clear and brightly colorful and also has a good parallax effect. The proposed method can open a brand-new research perspective for light-field 3D encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.