Abstract

The light extraction of 1 × 1 mm(2) GaN-based blue light-emitting diodes (LEDs) was enhanced by a self-assembled monolayer (SAM) of silica submicron spheres. The silica spheres were synthesized with various spherical sizes via the ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water/ethanol solutions. Hexagonal closely-packed (HCP) silica sphere monolayer was formed onto the indium tin oxide layer of the LED by a spin coating process. The size effect of silica spheres on the light-extraction efficiency (LEE) of GaN-based LEDs was theoretically studied and their optimum size was determined. The simulation results showed that the use of silica spheres can improve the LEE by 1.1-1.32 times compared to the conventional LEDs. The light output power of the LED with 650-nm-thick SAM of HCP silica spheres was experimentally enhanced by 1.28 and 1.23 times under the injection currents of 100 and 350 mA, respectively. By employing the SAM of HCP silica spheres, the directional emission pattern was relatively converged, indicating a reasonable consistency with the simulation result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.