Abstract

Stereotyped oscillations in population neural activity recordings from immobilized Caenorhabditis elegans have garnered interest for their striking low dimensionality and their evocative state-space trajectories or manifolds. Previously these oscillations have been interpreted as intrinsically driven global motor commands. Here we test whether these oscillations are intrinsic. We show that similar oscillations are evoked by high-intensity blue light commonly used for calcium imaging. Oscillations are reduced or absent and have a lower frequency when a longer imaging wavelength is used. Under the original blue light illumination, oscillations are reduced or have a lower frequency in animals that lack GUR-3, an endogenous light- and hydrogen-peroxide-sensitive gustatory receptor. Additional experiments with hydrogen peroxide are consistent with GUR-3's involvement. We therefore propose that blue light evokes global oscillations in part through the creation of reactive oxygen species that activate the hydrogen-peroxide-sensing receptor GUR-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.