Abstract

Solid state PbS quantum dots (QDs)/TiO(2) heterojunction solar cells were produced by depositing PbS QDs on a 500 nm thick mesoscopic TiO(2) films using layer-by-layer deposition. Importantly, the PbS QDs act here as photosensitizers and at the same time as hole conductors. The PbS QDs/TiO(2) device produces a short circuit photocurrent (J(sc)) of 13.04 mA/cm(2), an open circuit photovoltage (V(oc)) of 0.55 V and a fill factor (FF) of 0.49, corresponding to a light to electric power conversion efficiency (η) of 3.5% under AM1.5 illumination. The electronic processes occurring in this device were investigated by transient photocurrent and photovoltage measurements as well as impedance spectroscopy in the dark and under illumination. The investigations showed a high resistivity for the QD/metal back contact, which reduces drastically under illumination. EIS also indicated a shift of the depletion layer capacitance under illumination related to the change of the dipole at this interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.