Abstract

In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy dissipation, some part of energy is lost through relaxation of excited chlorophyll molecules. To date, several models to quantify energy loss through these dissipative pathways in PSII have been proposed. In this short review, we compare and evaluate these models for PSII energy allocation when they are applied to non-steady state photosynthesis. As a case study, an investigation on energy allocation to qE-associated dissipation at PSII under non-steady state photosynthesis using PsbS-deficient rice transformants is introduced. Diurnal and seasonal changes in PSII energy allocation in rice under natural light are also presented. Future perspective of studies on PSII energy allocation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call