Abstract

AbstractLimited triple‐phase boundaries arising from the accumulation of solid discharge product(s) in solid‐state cathodes (SSCs) pose a challenge to high‐property solid‐state lithium‐oxygen batteries (SSLOBs). Light‐assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner‐sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light‐induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge–charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory‐to‐practical applications in sunlight‐induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.