Abstract

Inorganic nanoparticles doped with optically active rare-earth ions and coated with organic ligands were synthesized in order to create fluorescent polymethyl methacrylate (PMMA) nanocomposites. Two different aromatic ligands (acetylsalicylic acid, ASA and 2-picolinic acid, PA) were utilized in order to functionalize the surface of Tb3+ : LaF3nanocrystals. The selected aromatic ligand systems were characterized using infrared spectroscopy, thermal analysis, rheological measurements, and optical spectroscopy. Nanoparticles producedin situwith the PMMA contained on average 10 wt% loading of Tb3+ : LaF3at a 6 : 1 La : Tb molar ratio and ~7 wt% loading of 4 : 1 La : Tb molar ratio for the PA and ASA systems, respectively. Measured diameters ranged from457±176 nm to150±105 nm which is indicative that agglomerates formed during the synthesis process. Both nanocomposites exhibited the characteristic Tb3+emission peaks upon direct ion excitation (350 nm) and ligand excitation (PA : 265 nm and ASA : 275 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call