Abstract

We report a top-contact light emitting field-effect transistor based on an asymmetric vertical heterojunction using pentacene as a field-effect layer and tris-(8-hydroxyquinolinato) aluminum (Alq3) as an electron transport and luminescent material, which is fabricated on an indium tin oxide (ITO)-coated glass substrate with poly (methyl methacrylate) (PMMA) as a gate dielectric. The Alq3 layer underneath the drain electrode roughly occupies one half of the pentacene surface forming an asymmetric heterojunction with pentacene. A hole transport layer N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) is introduced to occupy the other half of the pentacene surface underneath the source electrode to allow vertical hole transport in the device. We have realized the electrical switching functionality of a field-effect transistor (FET) and the control of electroluminescence (EL) simultaneously under ambient atmosphere. The device exhibits typical p-channel characteristics and green emission from Alq3 is observed adjacent to the drain electrode. A working principle of the device is discussed in detail. Furthermore, this device configuration enables high-spatial-resolution fluorescence imaging of device operation, which is a simple and powerful tool for studying organic luminescent materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.