Abstract

Due to size- and shape-dependent properties, a shape-controlled synthesis of silver nanoparticles (AgNPs) is one of the research challenging topics for their production and potential applications. This work reported the simple eco-friendly syntheses of different shaped AgNPs controlled by the plasmid DNA content and light emitting diodes (LEDs) irradiation. The synthesized AgNPs appeared as yellow, orange and green colloidal AgNPs, which transmission electron microscope (TEM) images revealed their different shapes; spherical AgNPs, a mixture of spherical and hexagonal AgNPs, and a mixture of spherical, hexagonal and corner-truncated triangle AgNPs, respectively. The average sizes of spherical, hexagonal and corner-truncated triangle AgNPs in the green colloidal solution were 12.32 ± 2.22, 23.03 ± 6.62 and 15.84 ± 4.31 nm, respectively. The analyses of X-ray diffraction, selected area electron diffraction and high-resolution TEM indicated the crystalline nature of the synthesized particles as the face-centred cubic silver. All synthesized AgNPs exhibited antioxidant activities similarly, whereas the yellow colloidal AgNPs exhibited the strongest antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus as compared with the green and orange colloidal AgNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.