Abstract
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light emitting devices based on silicon nanostructures. The performances of crystalline, amorphous and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature EL with the advantage to be formed at a temperature of only 900 °C, remarkably lower than the temperature needed for the formation of Si nanocrystals (1100 °C or higher). To improve the extraction of the light, we coupled the emitting system with a 2D photonic crystal structure properly fabricated with ULSI technology to reduce the total internal reflection of the emitted light. We demonstrate that the extraction efficiency is increased by a factor of 4. Finally, the light emission from devices based on Er-doped Si nanoclusters has been studied and in particular we have investigated the luminescence quenching processes limiting quantum efficiency in these devices. In fact the carrier injection, that determines the excitation of Er ions through electron–hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. These data are presented and the implications on the device performances discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.