Abstract

In this study, we explore how one can use cavity polariton formation and a non-Condon vibronic coupling mechanism to form a type of hybrid light-matter state we denote as Herzberg-Teller (HT) vibronic polaritons. We use simple models to define the basic characteristics of these hybrid light-matter excitations including their dispersive energies. Experimentally, we find evidence of HT polaritons in the light emission spectra from copper(II) tetraphenylporphyrin (CuTPP) molecules strongly coupled to both single and multimode Fabry-Perot resonator structures. For specific resonator designs, we find evidence of significant enhancement of light emission from a short-lived sing-doublet state of CuTPP, which couples to a higher energy singlet state via a non-Condon vibronic mechanism. The results of a two-state model support the conclusion that this enhancement and the temperature-dependent dispersion of the light emission peak energy stem from radiative relaxation into cavity photon states dressed by collective vibrations of the molecules participating in polariton formation. These results show how researchers can leverage the complex interplay of electronic and nuclear degrees of freedom in light absorbing molecules to form a vaster array of coherent light-matter states and potentially transform platforms in optoelectronic and photocatalytic technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call