Abstract

Light-emitting Si-rich silicon nitride (SRN) films were fabricated by plasma enhanced chemical vapor deposition followed by low temperature (500–900°C) annealing. The optical properties of SRN films were studied by micro-Raman and photoluminescence spectroscopy and indicate the presence of small Si clusters characterized by broad near-infrared emission, large absorption/emission Stokes shift, and nanosecond recombination. Our results are supported by first-principles simulations indicating that N atoms bonded to the surface of nanometer Si clusters play a crucial role in the emission mechanism of SRN films. Light emission from SRN systems can provide alternative routes towards the fabrication of optically active Si devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.