Abstract

Dye-doped cholesteric liquid crystals with a helical pitch of the order of a wavelength have a strong effect on the fluorescence properties of dye molecules. This is a promising system for realizing tunable lasers at low cost. We apply a plane wave model to simulate the spontaneous emission from a layer of cholesteric liquid crystal. We simulate the spectral and angle dependence and the polarization of the emitted light as a function of the order parameter of the dye in the liquid crystal. Measurements of the angle dependent emission spectra and polarization are in good agreement with the simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call