Abstract

Organic-inorganic hybrid metal halides have been widely studied as a kind of phosphor materials for high-performance white light-emitting diodes. In this paper, a series of organic-inorganic metal-halide (C3H10N)4Pb1-xMnxBr6 powders with different Mn2+ ion doping concentrations were synthesized by mechanochemical methods, giving broadband white light emission with a photoluminescence quantum yield of 36.1% at room temperature, which turn green with a much larger intensity at 80 K. Interestingly, its emission converted from white to red after 100 °C treatments and turned back to white again when exposed to moist air for a while. This emission variation was caused by the adsorbed water layer on the surface of product powders via the dielectric confinement. The red emission from no water powders is identified to occur from the Mn ferromagnetic pair in point-shared octahedral sites, while the broadband white emission originated from the surface water-assisted dielectric confinement and surface polarization which combine the self-trapped excitons and d-d transitions of Mn ions and Mn pairs in the product. Moreover, this white emission can transform into green color at 80 K with a much stronger intensity, caused by the even efficient surface dielectric confinement by the adsorbed frozen water layer. This special compound has the advantages of simple preparation, low cost, and good stability and even contains water molecule in the air, giving a near-perfect white emission, with CIE of (0.33, 0.35) and correlated color temperatures at around 5733 K, which may be used for different applications such as sensing, solid-state lighting, and display.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.