Abstract

The Seebeck coefficient and carrier mobility in reported doped BiCuSeO system are too small, which limits the improvement of thermoelectric performance. Here, we proposed a novel strategy for optimizing thermoelectric performance by increasing Seebeck coefficient and boosting carrier mobility. We demonstrate that light element Li doping boosts carrier mobility (7.39 cm2 V-1 s-1) due to largely reduced carrier scattering, which results in about 2-fold increase in carrier mobility as compared with reported Bi0.875Ba0.125CuSeO through modulation doping or microstructure texturing. Moreover, the Seebeck coefficient remarkably increases by contribution of spin entropy induced by magnetic ions Mn incorporation. The enhancement of Seebeck coefficient coupled with enhanced electrical conductivity result in high power factor. Furthermore, nanoprecipitates and dual-atom point defect leads to a significant reduction of lattice thermal conductivity. Therefore, a high ZT value of 0.9 was achieved at 873 K through optimizing power factor while maintaining low thermal conductivity. Our findings provide a new perspective for designing prospective thermoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.