Abstract

Motivated by recent experiments on pump-induced polar ordering in the quantum paraelectric SrTiO$_3$, we study a driven phonon system close to a second order phase transition. Analyzing its classical dynamics, we find that sufficiently strong driving leads to transitions into polar phases whose structures, determined by the light polarization, are not all accessible in equilibrium. In addition, for certain intensity profiles we demonstrate the possibility of two-step transitions as a function of fluence. For even stronger field intensities, the possibility of period-doubling and chaotic behavior is demonstrated. Finally we develop a generalized formalism that allows us to consider quantum corrections to the classical dynamics in a systematic fashion. We predict a shift in the critical pump fluence due to quantum fluctuations with a characteristic dependence on the fluence increase rate, which can be observed in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call