Abstract

Photosensitizers and photothermal agents have attracted increasing attention for in vitro diagnosis, but the combination remains challenging. Herein, a light-driven photocatalytic-photothermal synergetic system integrated microfluidic distance-based analytical device (PCPT-μDAD) for visual, portable, sensitive, and quantitative detection of targets was developed. Target DNA was recognized and initiated the hybridization chain reaction to form a double-stranded DNA/SYBR Green I (dsDNA/SG-I) complex. By applying the photosensitization of the dsDNA/SG-I complex and the photothermal effect of oxidized 3,3',5,5'-tetramethylbenzidine, the target concentration can effectively translate into a visual distance signal readout. Importantly, the light-driven PCPT-μDAD greatly improves the controllability of catalytic reactions and signal amplification efficiency. The light-driven PCPT-μDAD shows a low limit of detection (fM level), good stability, and high reproducibility for nucleic acid detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call