Abstract

This work suggests an intriguing light-driven atomic assembly proposal to orderly configure the distribution of reactive sites to optimize the spin-entropy-related orbital interaction and charge transfer from electrocatalysts to intermediates. Herein, the introduced fluorine (F) atoms acting as photo-corrosion centres in MnO1.9 F0.1 effectively soften the bonding interaction of Mn-O bonds in the IrCl3 solution. Therefore, partial Mn atoms can be successively replaced to form orderly atomic-hybridized catalysts with a spin-related low entropy due to the coexistence of Ir-atomic chains and clusters. The time-related elemental analysis demonstrates that the dynamic dissolution/redeposition of Ir clusters in acidic oxygen evolution leads to a reintegration of the reaction pathway to seek the switchable rate-limiting step with a lower activation energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.