Abstract

Photochromic conducting molecules have emerged because of their unique capacity to modulate electrical conductivity upon exposure to light, toggling between high and low conductive states. This unique amalgamation has unlocked novel avenues for the application of these materials across diverse areas in optoelectronics and smart materials. The fundamental mechanism underpinning this phenomenon is based on the light-driven isomerization of conjugated π-systems which influences the extent of conjugation. The photoisomerization process discussed here involves photochromic switches such as azobenzenes, diarylethenes, spiropyrans, dimethyldihydropyrenes, and norbornadiene. The change in the degree of conjugation alters the charge transport in both single molecules and bulk states in solid samples or solutions. This article discusses a number of recent examples of photochromic conducting systems and the challenges and potentials of the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.