Abstract

AbstractDesign and fabrication of photomechanical soft actuators has attracted intense scientific interest because of their potential in the manufacture of untethered intelligent soft robots and advanced functional devices. Trifunctional and monofunctional polymerizable molecular motors are judiciously designed and synthesized. Novel light‐driven liquid crystalline networks (LCN) are prepared by crosslinking overcrowded‐alkene‐based molecular motors with different degrees of freedom into the anisotropic LCN. The photoisomerization and thermal helix inversion of light‐driven molecular motors are reversible when only the upper part of the molecular motor is linked to the network, endowing the LCN film with remarkable photoactive performance. However, photochemical geometric change of the light‐driven molecular motor does not work after crosslinking both the upper and lower part of the motor by polymer chains. Interestingly, it is found that the fastened motor can transfer the light energy into localized heat instead of performing photoisomerization. The light‐driven molecular‐motor‐based LCN soft actuators are demonstrated to function as a grasping hand, where the continuous motions of grasping, moving, lifting, and releasing an object are successfully achieved. This work may provide inspiration to the preparation of next‐generation photoactive advanced functional materials toward their wide applications in the areas of photonics, optoelectronics, soft robotics, and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.