Abstract
An enzymatic system for light-driven hydrogen generation has been developed through covalent attachment of a ruthenium chromophore to nickel-substituted rubredoxin (NiRd). The photoinduced activity of the hybrid enzyme is significantly greater than that of a two-component system and is strongly dependent on the position of the ruthenium phototrigger relative to the active site, indicating a role for intramolecular electron transfer in catalysis. Steady-state and time-resolved emission spectra reveal a pathway for rapid, direct quenching of the ruthenium excited state by nickel, but low overall turnover numbers suggest initial electron transfer is not the rate-limiting step. This approach is ideally suited for detailed mechanistic investigations of catalysis by NiRd and other molecular systems, with implications for generation of solar fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.