Abstract
Light-exposed organisms developed photoreceptors to transduce light signals for environmental adaptation. Phytochromes, found in bacteria, fungi, and plants, can discriminate the ratio of red and far-red light using the isomerization of a bilin chromophore bound to a photosensory module to trigger downstream conformational changes in the protein. Here, we investigated by hydrogen/deuterium exchange mass spectrometry and electron paramagnetic resonancespectroscopy the light-driven domain mechanicsof a minimal monomeric photosensory module from the group II phytochrome Cph2 from Synechocystis sp. PCC 6803. We could unambiguously trace the light-driven secondary structural rearrangementof its tongue region, and we found a translational motion of the PHY domain that is related to what was found before by X-ray studies in a group I module. Our analysis demonstrates a common light response in the photosensory modules of phytochromes, orchestrated solely by the GAF-PHY bidomain independent of further quaternary interactions or the nature of downstream effector domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.