Abstract

The increase of carbon dioxide (CO2) in the atmosphere has resulted in a global greenhouse effect and extreme weather. Photocatalytic conversion of CO2 into valuable chemicals driven by solar energy is conceivable for solving the above problem. Metal–organic frameworks (MOFs) as a class of organic–inorganic hybrid materials have considerable prospect for carbon dioxide reduction reaction (CO2RR) photocatalysis. Nevertheless, most MOFs in the CO2RR still have limited photocatalytic performance as well as selectivity caused by having a single metal and face the challenge of instability. Herein, 10 Prussian blue analogues (PBAs) as heterogeneous catalysts were directly employed for the photocatalytic CO2RR, which exhibit good photocatalytic performance for CO production. A mass evolution rate of 140 mmol g–1 h–1, an apparent quantum efficiency (AQY) of about 0.7%, and a selectivity of about 96.8% for CO were obtained over Ni–Co PBA. Notably, the CO2RR activities of MIICo PBAs are better than those of MII–Fe PBAs, but the former’s selectivities for CO are lower than those of the latter. The divergence of activity is dependent on their electron transfer rates, which is confirmed by the electrochemical experiments and spectral characterization. In addition, density functional theory (DFT) as well as H2 adsorption and desorption experiments of the PBAs reveal the difference in selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.