Abstract

Directing CO2 conversion using photoautotrophic microbes offers a promising route to coupling carbon mitigation with petrochemical replacement. However, solar-based biomanufacturing is hampered by inefficient genetic manipulation, narrow product scope and light-induced decomposition. Here we report a spatiotemporally separated modular strategy to realize CO2-to-molecule conversion by sequentially linking carbon sequestration and cellular catalysis via stable mediator compounds. The carbon fixation rate of the sequestration module was improved by approximately 50% through metabolic network remodelling, while biphasic catalysis, multiple gene editing and high-throughput workflow were applied to the catalysis modules to produce olefins, cinnamaldehyde and curcumin. The catalytic efficiency was notably enhanced by up to 114-fold compared with the monoculture. This modular design approach enables the rapid development of sustainable biorefineries in a plug-and-play fashion, as evidenced by the production of various chemicals at the gram-per-litre level through scaled-up fermentation. This carbon-negative flexible platform notably widens the applicability of light-driven biosynthesis and may boost the bioindustry of CO2 reduction in a sustainable future. Carbon-negative biomanufacturing is typically hampered by narrow product scope and light-induced decomposition. Now, an integrated photosynthetic carbon sequestration and cellular catalysis strategy for CO2 valorization are reported. Multiple gene editing and a high-throughput workflow have facilitated its application to the biocatalytic production of styrene, intracellular unstable aldehydes and photosensitive molecules from CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.