Abstract

Directing CO2 conversion using photoautotrophic microbes offers a promising route to coupling carbon mitigation with petrochemical replacement. However, solar-based biomanufacturing is hampered by inefficient genetic manipulation, narrow product scope and light-induced decomposition. Here we report a spatiotemporally separated modular strategy to realize CO2-to-molecule conversion by sequentially linking carbon sequestration and cellular catalysis via stable mediator compounds. The carbon fixation rate of the sequestration module was improved by approximately 50% through metabolic network remodelling, while biphasic catalysis, multiple gene editing and high-throughput workflow were applied to the catalysis modules to produce olefins, cinnamaldehyde and curcumin. The catalytic efficiency was notably enhanced by up to 114-fold compared with the monoculture. This modular design approach enables the rapid development of sustainable biorefineries in a plug-and-play fashion, as evidenced by the production of various chemicals at the gram-per-litre level through scaled-up fermentation. This carbon-negative flexible platform notably widens the applicability of light-driven biosynthesis and may boost the bioindustry of CO2 reduction in a sustainable future. Carbon-negative biomanufacturing is typically hampered by narrow product scope and light-induced decomposition. Now, an integrated photosynthetic carbon sequestration and cellular catalysis strategy for CO2 valorization are reported. Multiple gene editing and a high-throughput workflow have facilitated its application to the biocatalytic production of styrene, intracellular unstable aldehydes and photosensitive molecules from CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call