Abstract

Designing cost-effective alkaline hydrogen evolution reaction (HER) catalysts with high water dissociation ability, enhanced hydroxyl transfer rate and optimized hydrogen adsorption free energy (ΔGH*) by a time and energy efficient strategy is pivotal, but still challenging for alkaline water electrolysis. Herein, Pt/Mo-NiOx hybrid consisting of Pt clusters assembled on Mo-doped NiOx nanosheet arrays is prepared on the surface of raw NiMo foam (NMF) by a light-driven strategy to address this challenge. Benefitting from the electronic interaction between Mo-NiOx and Pt, the Pt/Mo-NiOx composite owns optimized ΔGH* and is beneficial for accelerating water dissociation and hydroxyl transfer. As a result, the optimized Pt/Mo-NiOx/NMF electrode displays an exceptional alkaline HER activity with a low overpotential of 62 mV to obtain 100 mA cm−2 and a high Pt mass activity (13.2 times as high as that of commercial 20 wt% Pt/C). Furthermore, the assembled two-electrode cell of Pt/Mo-NiOx/NMF||NiFe-LDH/NF requires a voltage of only 1.549 V to deliver 100 mA cm−2, along with negligible activity decay after 70 h stability test. The present study provides a promising strategy for exploiting high-performance electrocatalysts towards alkaline HER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call