Abstract

Light‐driven swimming particles hold great potential in wide applications ranging from next‐generation drug delivery to versatile microrobotic devices. It is desired that the self‐propelled microparticles should swim not only autonomously but also directionally to achieve their goals in their potential applications. This paper presents the first example of fully organic colloidal particles of a spiropyran‐terminated hyperbranched polymer that can be driven and meanwhile steered by a UV light source, swimming straight towards the UV source. The mean‐square velocities of the photochromic suspension particles are about 20 μm s−1, and increase to about 54 μm s−1 with the addition of NaCl of 0.5%. The phototactic propulsion is supposed to be originated from the UV irradiation‐induced interfacial tension gradient on the surface of the colloidal particles. This finding allows for the design of new microengines for next‐generation drug delivery systems, microrobotic devices, and self‐adaptive photocatalysts, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.