Abstract

Depending on the mobile species involved in the resistive switching process, redox random access memories and conductive bridge random access memories are widely studied with distinct switching mechanisms. Although the two resistance switching types have faithfully proved to be electrochemically linked in metal oxide‐based memristive devices, the corresponding photo‐induced transition has not yet been realized. Here, a photo‐induced transition through the integration of a graphene layer into a titanium oxide‐based memory device is demonstrated. Coupled with Raman mapping and an electron energy loss spectroscopy technique, the photo‐induced interaction at the heterostructure of graphene/titanium oxide are considered to dominate the transition process. Moreover, a negative differential resistance effect is observed by controlling the applied voltage, which can be credited to the saturation of trap centers (oxygen vacancies) and the increase of interfacial barrier at the graphene/titanium oxide heterojunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.