Abstract

Coupling the bi-functional mechanism with compressive lattice strain might be an effective way to boost the electrocatalysis of platinum (Pt)-based nanoparticles for methanol oxidation reaction (MOR). This strategy weakens the chemisorption of poisoning CO-like intermediates generated during MOR on the active Pt sites by lowering their d-band center. In this context, we herein report the synthesis of ternary copper-tungsten-platinum (CuWPt) nanoalloys with light doping of W element by simply co-reducing their precursors at elevated temperature. In this ternary alloy system, the presence of only small amount of W element not only weakens the chemisorption of CO-like intermediates by lowering the Pt d-band center through compressive lattice strain, but also cleans the active Pt sites by "hydrogen spillover effect", endowing the as-prepared CuWPt nanoalloys at an appropriate Cu/W/Pt ratio with good activity for MOR. In specific, the ternary CuWPt alloy nanoparticles at a Cu/W/Pt molar ratio of 21/4/75 show a specific activity of 2.5 mA·cm<sup>−2</sup> and a mass activity of 2.11 A·mg<sup>−1</sup> with a better durability, outperforming those ternary CuWPt alloy nanoparticles at other Cu/W/Pt ratios, binary CuPt alloys and commercial Pt/C catalyst as well as a large number of reported Pt-based electrocatalysts. In addition, a single direct methanol fuel cell (DMFC) assembled using ternary CuWPt nanoalloys as anodic catalysts shows a power density of 24.3 mW·cm<sup>−2</sup> and an open-circle voltage of 0.6 V, also much higher than those of the single DMFC assembled from commercial Pt/C catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call