Abstract

The integration of top-down (lithographic) and bottom-up (synthetic chemical) methodologies remains a major goal in nanoscience. At larger length scales, light-directed chemical synthesis, first reported two decades ago, provides a model for this integration, by combining the spatial selectivity of photolithography with the synthetic utility of photochemistry. This review describes attempts to realise a similar integration at the nanoscale, by employing near-field optical probes to initiate selective chemical transformations in regions a few tens of nm in size. A combination of near-field exposure and an ultra-thin resist yields exceptional performance: in self-assembled monolayers, an ultimate resolution of 9 nm (ca. λ/30) has been achieved. A wide range of methodologies, based on monolayers of thiols, silanes and phosphonic acids, and thin films of nanoparticles and polymers, have been developed for use on metal and oxide surfaces, enabling the fabrication of metal nanowires, nanostructured polymers and nanopatterned oligonucleotides and proteins. Recently parallel lithography approaches have demonstrated the capacity to pattern macroscopic areas, and the ability to function under fluid, suggesting exciting possibilities for surface chemistry at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.