Abstract

Light-dependent K+ channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268–272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K+ channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K+ and 200 mM Mg2+ to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K+ concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants τo1, τo2 and τc1, τc2, respectively, similar to those of the light-dependent channel. In both the channels, τo1 and τo2 in ms ranges were similar to each other, although τc2 over tens of millisecond ranges was different. τo1, τo2, and the mean open time τo were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of τo2 or τo. In both, the reversal potentials using 200- and 450-mM K+-filled pipettes were close to the K+ equilibrium potentials, suggesting that both the channels are primarily K+ selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K+ pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K+ channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.