Abstract

BackgroundCyanobacteria account for 20–30% of Earth's primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of ∼450 TW [1]. These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2].Methodology/Principal FindingsHere we show that diverse genera of cyanobacteria including biofilm-forming and pelagic strains have a conserved light-dependent electrogenic activity, i.e. the ability to transfer electrons to their surroundings in response to illumination. Naturally-growing biofilm-forming photosynthetic consortia also displayed light-dependent electrogenic activity, demonstrating that this phenomenon is not limited to individual cultures. Treatment with site-specific inhibitors revealed the electrons originate at the photosynthetic electron transfer chain (P-ETC). Moreover, electrogenic activity was observed upon illumination only with blue or red but not green light confirming that P-ETC is the source of electrons. The yield of electrons harvested by extracellular electron acceptor to photons available for photosynthesis ranged from 0.05% to 0.3%, although the efficiency of electron harvesting likely varies depending on terminal electron acceptor.Conclusions/SignificanceThe current study illustrates that cyanobacterial electrogenic activity is an important microbiological conduit of solar energy into the biosphere. The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3], [4]. The electrogenic pathway of cyanobacteria might be exploited to develop light-sensitive devices or future technologies that convert solar energy into limited amounts of electricity in a self-sustainable, CO2-free manner.

Highlights

  • Cyanobacteria are of profound biological and biogeochemical importance

  • The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3,4]

  • The current studies show that cyanobacteria exhibit lightdependent electrogenic activity and that this activity is conserved among diverse genera

Read more

Summary

Introduction

Cyanobacteria are of profound biological and biogeochemical importance. Oxygenic photosynthesis carried out by primitive cyanobacteria transformed early Earth’s reducing atmosphere into an oxidizing one 2.4 billion years ago and provided for the evolution of complex aerobic life below a protective ozone layer [5]. Diverse genera of mat-building and planktonic cyanobacteria are found all over the world, from temperate ponds to some of the driest and most inhospitable environments imaginable, where they serve key ecological roles in energy transduction, nitrogen fixation and as pioneer species [2] These solar-powered prime movers of global nitrogen and carbon cycling probably represent the most important primary producers in the ocean and they colonize barren rock as new land is created through volcanic activity [6]. Cyanobacteria account for 20–30% of Earth’s primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of ,450 TW [1] These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call