Abstract
Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.