Abstract

A photoresponsive surfactant has been used as a means to control protein structure and dynamics with light illumination. This cationic azobenzene surfactant, azoTAB, which undergoes a reversible photoisomerization upon exposure to the appropriate wavelength of light, adopts a relatively hydrophobic, trans structure under visible light illumination and a relatively hydrophilic cis structure under UV light illumination. Small-angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy were used to measure the tertiary structure and internal dynamics of lysozyme in the presence of the photosurfactant, respectively. The SANS-based in vitro structures indicate that under visible light the photosurfactant induces partial unfolding that principally occurs away from the active site near the hinge region connecting the α and β domains. Upon UV exposure, however, the protein refolds to a nativelike structure. At the same time, enhanced internal dynamics of lysozyme were detected with the surfactant in the trans form through NSE measurements of the Q-dependent effective diffusion coefficient (D(eff)) of the protein. In contrast, the D(eff) values of lysozyme in the presence of cis azoTAB largely agree with the rigid-body calculation as well as those measured for pure lysozyme, suggesting that the native protein is dormant on the nanosecond time and nanometer length scales. Lysozyme internal motions were modeled by assuming a protein of two (α and β domains) or three (α and β domains and the hinge region) domains connects by either soft linkers or rigid, freely rotating bonds. Protein dynamics were also tracked with Fourier transform infrared spectroscopy through hydrogen-deuterium exchange kinetics, which further demonstrated enhanced protein flexibility induced by the trans form of the surfactant relative to the native protein. Ensemble-averaged intramolecular fluorescent resonance energy transfer measurements similarly demonstrated the enhanced dynamics of lysozyme with the trans form of the photosurfactant. Previous results have shown a significant increase in protein activity in the presence of azoTAB in the trans conformation. Combined, these results provide insight into a unique light-based method of controlling protein structure, dynamics, and function and strongly support the relevance of large domain motions for the activity of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call