Abstract
Microbial cell factories offer a sustainable alternative for producing chemicals and recombinant proteins from renewable feedstocks. However, overburdening a microorganism with genetic modifications can reduce host fitness and productivity. This problem can be overcome by using dynamic control: inducible expression of enzymes and pathways, typically using chemical- or nutrient-based additives, to balance cellular growth and production. Optogenetics offers a non-invasive, highly tunable, and reversible method of dynamically regulating gene expression. Here, we describe how to set up light-controlled fermentations of engineered Escherichia coli and Saccharomyces cerevisiae for the production of chemicals or recombinant proteins. We discuss how to apply light at selected times and dosages to decouple microbial growth and production for improved fermentation control and productivity, as well as the key optimization considerations for best results. Additionally, we describe how to implement light controls for lab-scale bioreactor experiments. These protocols facilitate the adoption of optogenetic controls in engineered microorganisms for improved fermentation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.