Abstract

Carbon nanotube-chromophore hybrids are promising building blocks in order to obtain a controlled electro-optical transduction effect at the single nano-object level. In this work, a strong spectral selectivity of the electronic and the phononic response of a chromophore-coated single nanotube transistor is observed for which standard photogating cannot account. This paper investigates how light irradiation strongly modifies the coupling between molecules and nanotube within the hybrid by means of combined Raman diffusion and electron transport measurements. Moreover, a nonconventional Raman enhancement effect is observed when light irradiation is on the absorption range of the grafted molecule. Finally, this paper shows how the dynamics of single electron tunneling in the device at low temperature is strongly modified by molecular photoexcitation. Both effects will be discussed in terms of photoinduced excitons coupled to electronic levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call