Abstract

Nanophotonics The development of nanophotonic technology is reliant on the ability to confine light to spatial dimensions much less than the wavelength of the light itself. Typically, however, in metal plasmonic approaches, there is a trade-off between confinement and losses. Alcaraz Iranzo et al. fabricated heterostructures comprising monolayers of graphene and hexagonal boron nitride (hBN) and an array of metallic rods. The light was confined vertically (as propagating plasmons) between the metal and the graphene, even when the insulating hBN spacer was just a single monolayer. Such heterostructures should provide a powerful and versatile platform for nanophotonics. Science , this issue p. [291][1] [1]: /lookup/doi/10.1126/science.aar8438

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.