Abstract

We investigate the propagation of a local perturbation in the two-dimensional transverse-field Ising model with a time-dependent application of the mean-field theory based on the BBGKY hierarchy. We show that the perturbation propagates through the system with a finite velocity and that there is a transition from Manhattan to Euclidian metric, resulting in a light cone with an almost circular shape at sufficiently large distances. The propagation velocity of the perturbation defining the front of the light cone is discussed with respect to the parameters of the Hamiltonian and compared to exact results for the transverse-field Ising model in one dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.