Abstract

AbstractThe continually increasing nitrogen (N) deposition is expected to cause a saturation response of ecosystem aboveground net primary productivity (ANPP). However, its underlying mechanisms, especially for the decrease of ANPP under high N addition rate, remain poorly understood. A field manipulative experiment was conducted to investigate the response of ANPP to six levels of N addition rate (0, 2, 4, 8, 16, and 32 g N·m−2·year−1) in an alpine meadow during 2015–2017. We specifically explored four possible mechanisms, light limitation, biodiversity loss, soil acidification, and ammonium toxicity, underlying the saturation response of ANPP to increasing N addition. The results showed that ANPP increased linearly with N addition rates in 2015, while converted to a saturation response with N addition rates in 2016–2017. With increasing N addition rate, species richness and soil pH significantly reduced while standing litter, light limitation, and NH4+‐N content significantly increased. Under low N addition rate (N0 to N4), increases in N availability significantly improved ANPP although it was partly offset by the indirect N effect via increasing litter accumulation and thus light competition. Under high N addition rate (N8–N32), the decreases in species richness mostly explained the N‐induced reduction in ANPP, leading to a saturation response. This study provides empirical evidences on interpreting N saturation response of ANPP in the alpine meadow. The findings will advance our current understanding of N enrichment effects on ANPP and benefit biogeochemical models in parameterization and benchmark analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.