Abstract
The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean-field models. Three different calculations are used for comparison: the Thomas--Fermi, the coexisting phases, and the compressible liquid drop approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy, pressure, entropy, and chemical potentials in the range of particle number densities and temperatures expected to cover the pasta region are calculated. Finally, a comparison with a finite-temperature Skyrme--Hartree--Fock calculation is drawn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.