Abstract
We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.