Abstract

Light-assisted reactive collisions between laser-cooled Ba+ ions and Rb atoms were studied in an ion–atom hybrid trap. The reaction rate was found to strongly depend on the electronic state of the reaction partners with the largest rate constant [7(2) × 10−11 cm3 s−1] obtained for the excited Ba+(6s)+Rb(5p) reaction channel. Similar to the previously studied Ca++Rb system, charge transfer and radiative association were found to be the dominant reactive processes. The generation of molecular ions by radiative association could directly be observed by their sympathetic cooling into a Coulomb crystal. Potential energy curves up to the Ba+(6s)+Rb(5p) asymptote and reactive-scattering cross sections for the radiative processes were calculated. The theoretical rate constant obtained for the lowest reaction channel Ba+(6s)+Rb(5s) is compatible with the experimental estimates obtained thus far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.