Abstract

Relationships between light intensity and substrate concentration and rates of assimilation and oxidation of ammonium by microorganisms were investigated at four stations off the Washington coast and three stations in the Southern California Bight. Ammonium oxidation rates were negatively correlated with light in the photic zone at all stations; light inhibition of nitrifying bacteria forms an important control over the depth distribution of ammonium oxidation activity. Both assimilation and oxidation were positively correlated with ammonium concentration at the Washington coast stations, where ambient ammonium concentrations were high. Light and ammonium assimilation rate were positively correlated at the Southern California Bight stations (within the photic zone; i.e., excluding depths greater than 150m), but unrelated at the Washington coast stations. Assimilation and oxidation have nearly opposite distribution patterns with depth in the water column, but phytoplankton and nitrifying bacteria probably compete for ammonium at depths near the bottom of the photic zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.