Abstract
AbstractA smart acidochromic agarose‐based film with 1,4‐bis(para‐hydroxystyryl)benzene as the pH‐responsive fluorophore was prepared. This film can simultaneously harness the chemical potential of light and aerial humidity gradients to convert them into mechanical work. The strong reversible hygroscopicity of the agarose matrix induces swift locomotion by mechanical deformation owing to exchange of water with the surroundings. Driven by humidity, a 20 mg composite film coupled to a piezoelectric bending transducer sensor generates a peak output of approximately 80 mV, which corresponds to a power density of 25 μW kg−1. Excitation with UV light triggers isomerization of the chromophore, which appears as reshaping by spiraling, bending, or twisting of the film. The material also responds to changes in the pH value by reversible protonation of the fluorophore with rapid changes in color and fluorescence. The threefold sensing capability of this smart material could be utilized for the fabrication of multiresponsive actuating dynamic elements in biomedicine and soft robotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.