Abstract
We present a detailed case study of degradation in monocrystalline silicon photovoltaic modules operating in a utility-scale power plant over the course of approximately three years. We present the results of degradation analysis on arrays within the site, and find that five of the six arrays degraded faster than the best performing array, even though the arrays consist of modules of the same manufacturer and model. We also describe the results of extensive laboratory characterization of modules returned from the field, including module- and cell-level current-voltage characterization, luminescence imaging, and accelerated testing. The laboratory test results and the field performance are consistent with light and elevated temperature induced degradation (LeTID). Notably, we observe differences in back contact technology between affected and unaffected modules. This article also demonstrates a method to identify possible LeTID degradation in the field and confirm the result with laboratory testing of a small number of modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.