Abstract

Mouse superior rectus extraocular muscle was examined in serial section by light and electron microscopy. By such analysis, it was possible to discriminate single versus multiple innervation, characteristics of internal cell morphology, and topographical distribution of the respective fiber populations within the muscle. Singly innervated (SIF) and multiply innervated fibers (MIF) were observed, both in an orbital surface layer and in the underlying global region of the muscle. Five morphologically distinct fiber types (three SIF and two MIF) were discriminable in terms of fiber diameter, mitochondrial richness, development of the sarcoplasmic reticulum, and myofibrillar size. Many fibers, both SIF and MIF, terminated variously along the length of the muscle. The diameter of orbital MIF typically varied from one end of the fiber to the other by a factor of about three; the global MIF were of essentially constant diameter. The junctional complexity varied among the respective types of SIF. The MIF of both the global and orbital regions exhibited comparable ranges of complexity in their neuromuscular junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call