Abstract
A light and displacement-compensation-based iPPG algorithm is proposed in this paper for heart-rate measurement in complex detection conditions. Two compensation sub-algorithms, including light compensation and displacement compensation, are designed and integrated into the iPPG algorithm for more accurate heart-rate measurement. In the light-compensation sub-algorithm, the measurement deviation caused by the ambient light change is compensated by the mean filter-based light adjustment strategy. In the displacement-compensation sub-algorithm, the measurement deviation caused by the subject motion is compensated by the optical flow-based displacement calculation strategy. A series of heart-rate measurement experiments are conducted to verify the effectiveness of the proposed method. Compared with conventional iPPG, the average measurement accuracy increases by 3.8% under different detection distances and 5.0% under different light intensities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.