Abstract
Electrically pumped halide perovskite laser diodes remain unexplored, and it is widely acknowledged that continuous-wave (CW) lasing will be a crucial step. Here, we demonstrate room-temperature amplified spontaneous emission of Fe-doped CsPbBr3 crystal microwire excited by a CW laser. Temperature-dependent photoluminescence spectra indicate that the Fe dopant forms a shallow level trap states near the band edge of the lightly doped CsPbBr3 microcrystal. Pump intensity-dependent time-resolved PL spectra show that the introduced Fe dopant level makes the electron more stable in excited states, suitable for the population inversion. The emission peak intensity of the lightly Fe-doped microwire increases nonlinearly above a threshold of 12.3 kW/cm2 under CW laser excitation, indicating a significant light amplification. Under high excitation, the uniform crystal structure and surface outcoupling in Fe-doped perovskite crystal microwires enhanced the spontaneous emission. These results reveal the considerable promise of Fe-doped perovskite crystal microwires toward low-cost, high-performance, room-temperature electrical pumping perovskite lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.