Abstract

The frequency transfer properties of horizontal cells in the cat retina were studied as a function of the mean light intensity level and stimulus contrast. To this end, horizontal cell responses to sinusoidally modulated light stimuli were recorded intracellularly in the optically intact, in vivo eye. The light stimulus consisted of a 3.9 deg dia. spot superimposed on a steady background (8.8 deg dia.). A discrete Fourier analysts was performed in order to describe the amplitude and phase characteristics of the linear response component and in order to specify the nonlinear distortion of the response. The amplitude of the fundamental Fourier component was found to increase linearly with the contrast of the sinusoidal light intensity modulation. Increasing the mean light level while keeping the contrast constant caused a frequency dependent increase in response amplitude. The increase was most pronounced at high temporal frequencies and resulted in a conspicuous increase of the flicker fusion frequency. Steady background illumination caused a reduction of the response amplitudes at the lower temporal frequencies. Responses in the high frequency range, however, were not affected. The phase shifts of the fundamental Fourier components were found to diminish at increasing mean illumination levels. The harmonic distortion of horizontal cell responses to sinewave flicker was studied as a function of stimulus frequency and stimulus contrast. By comparing the data obtained using sinusoidal light intensity modulation with the intensity profiles described in a preceding paper it was investigated to what extent the harmonic distortion can be explained by the nonlinearity expressed in the response vs intensity profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.